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Abstract

In the paper two models implemented to forecast the hourly solar irradiance with a day in advance are described. The models, based
on Artificial Neural Networks (ANN), are generated by a master optimization process that defines the best number of neurons and
selects a suitable ensemble of ANN.

The two models consist of a Statistical (ST) model that uses only local measured data and a Model Output Statistics (MOS) that
corrects Numerical Weather Prediction (NWP) data. ST and MOS are tested for the University of Rome “Tor Vergata” site. The models
are trained and validated using one year data. Through a cross training procedure, the dependence of the models on the training year is
also analyzed.

The performance of ST, NWP and MOS models, together with the benchmark Persistence Model (PM), are compared. The ST model
and the NWP model exhibit similar results. Nevertheless different sources of forecast errors between ST and NWP models are identified.
The MOS model gives the best performance, improving the forecast of approximately 29% with respect to the PM.
� 2014 Elsevier Ltd. All rights reserved.

Keywords: Solar irradiance; Forecast; Neural network; MOS; Ensemble
1. Introduction

The rapid growth of electricity produced by PV has
introduced some criticisms into the grid due to the fluctuat-
ing nature of energy source which is dependent on meteo-
rological conditions. Thus reliable forecast models are
required for management and operation strategies. In par-
ticular the 24/72 h horizon forecast is essential for trans-
mission scheduling and day ahead energy market. In Italy
the PV energy production during the 2012 reached
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18.9 GW h produced by 16.4 GW installed providing an
average of 7% of yearly electrical consumption with a
monthly peak of 9% (Statistical data from the Italian
Manager of Electrical Services (GSE): “Solare
Fotovoltaico - Rapporto Statistico 2012” and Statistical
data from the Italian Manager of the National Electrical
Transmission Grid: “produzione 2012”).

The techniques to forecast the solar radiation or PV pro-
duction on the 24/72 h horizon can be divided in three
mains groups:

(1) Numerical Weather Prediction models (NWP)
(2) Statistical models (ST)
(3) Model Output Statistic (MOS)
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Nomenclature

Abbreviations
NWP Numerical Weather Prediction model
ST Statistical model
MOS Model Output Statistic model
ANN Artificial Neural Network
MLP NN Multi-Layer Perceptron Neural Network
STNN Developed Statistical model based on ANN
ECMWF-MOSNN Developed Model Output Statistic

model based on ANN and ECMWF NWP
data

Variables and dimensions

Gh Global Horizontal Irradiance W/m2

Gpoa Global Irradiance on the Plane of Array W/
m2

NADV Normalized Absolute Daily Variation of the
solar radiation between the day (t) and the
day (t � 1) Dimensionless

NMHV Normalized Maximum Hourly Variation of
the solar irradiance Dimensionless

Kt Clearness index Dimensionless
Pindex persistence index Dimensionless
Hh daily horizontal irradiation W h/m2 day
Ta average daily temperature �C
OD Ordinal Day number Dimensionless
HNWP Daily irradiation forecast W h/m2 day
Ghcs Clear Sky Global Horizontal Irradiance

(Ineichen/Perez model) W/m2

P(X) quantile trajectory W/m2

MSE Mean Square Error (W/m2)2

Corr Pearson correlation index Dimensionless
RMSE Root Mean Square Error W/m2

MAE Mean Absolute Error W/m2

MBE Mean Bias Error W/m2

Irmse skill score with respect to the RMSE
metric Dimensionless

DGrel mean width of the prediction intervals W/m2
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The numerical weather prediction models are essentially
based on the numerical integration of coupled differential
equations that describe the dynamics of the atmosphere
and radiation transport mechanisms. The main advantage
of these forecasting methods is that they are based on
deterministic physical models. On the other hand, the main
problem, in addition to the non-linearity of the used equa-
tions, is the spatial resolution of the integration grid: from
100 km (Global models) to few km (Mesoscale models)
that is too wide with respect to the PV plants size. Inside
the grid cell the cloud cover and aerosols are homoge-
neously fixed at their average values thus great errors could
be induced both in the amount and in the time of the fore-
cast irradiance on the PV site. Besides many NWP models
have a temporal output interval greater than one hour
while, as in this case, the hourly irradiance forecast is
required. A comparison of main numerical weather predic-
tion models (Global and Mesoscale models) for solar irra-
diance forecast in different locations can be found in Perez
et al. (2010, 2013) and Muller and Remund (2010).

The statistical models are based on methods to recon-
struct the relations between the hourly irradiance and past
meteorological parameters (cloud ratio, air temperature,
relative humidity, pressure, etc.) or past irradiance observa-
tions. The most used models for the one day horizon irra-
diance forecast are based on Artificial Neural Networks
(ANN). Thus spatial and temporal resolution problems
are overcome since these methods use ground measure-
ments taken directly on the PV plant site with a temporal
resolution less than one hour. On the other hand these
methods are not able to provide a good forecast in unstable
weather conditions since in these cases the correlation
between the irradiance and the meteorological variables
rapidly falls down. Several statistical models for 24 h fore-
cast of global irradiance or PV power can be found in the
literature presenting different ANN architectures. In Di
Piazza et al. (2013) and Chaouachi et al. (2009) time series
ANN Focused Time-Delay Neural Network (FTDNN)
and the Nonlinear Autoregressive Network with exogenous
inputs (NARX Network), are used. Radial Basis Function
Neural Network (RBFNN) is also implemented in
Chaouachi et al. (2009), while Multi-Layer Perceptron
Neural Network (MLPNN) are developed in Chaouachi
et al. (2009), Mellit and Massi (2010) and Voyant et al.
(2013).

The model output statistics approach combines both
NWP and ST models. The first one is used for the forecast
while the second is used to correct the site effects through
local ground measurements. The ST models are essentially
used to down scale the irradiance forecast, reducing the
systematic errors of the physical models. A variety of
model output statistic models that use statistical post pro-
cessing of the NWP output and stochastic learning tech-
niques have been developed by various authors. In
Perotto et al. (2013) a post-processing algorithm to correct
the radiation schemes used by the WRF-NWP model is
described. This is a physical based algorithm that improves
the forecast of atmosphere water vapor profile. It uses
regression coefficients that should be calculated from
ground measurements. A statistical post-processing
correction of the bias errors of the ECMWF-NWP data
was proposed by Lorenz et al. (2009a). This seems to be
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the most performing MOS model for global irradiance
forecast (Lorenz et al., 2009b). Perez et al. (2007) developed
a semi empirical model that correlates the NWP sky cover
(provided by the National Digital Forecast Database,
USA) with the global horizontal irradiance.

The advantage of the MOS models that use stochastic
learning techniques, is that they can easily use NWP data
to provide a direct forecast of a different variable
(Marquez and Coimbra, 2011; Chen et al., 2011; Wang
et al., 2011; Huang et al., 2010; Cai et al., 2010; Cao and
Lin, 2008 and Yona et al., 2008). In Marquez and
Coimbra (2011), Huang et al. (2010) and Yona et al.
(2008) the MLPNN were used, and in Wang et al. (2011)
this ANN architecture was coupled with the Gray Model.
The RBFNN is developed in Chen et al. (2011) and
Yona et al. (2008) while NARX in Cai et al., 2010, Recur-
rent Neural Networks (RNN) and Diagonal Recurrent
Wavelet Neural Networks (DRWNN) were implemented
in Cao and Lin (2008) and Yona et al. (2008).

An overview on solar irradiance and PV power forecast
techniques could be found in Paulescu et al. (2013), Kleissl
(2013) and Photovoltaic and Solar Forecasting: State of the
Art. IEA PVPS Task 14 (2013), while a complete study on
solar radiation benchmarks is reported in Lorenz et al.
(2009b), Beyer et al. (2009) and Traunmüller and
Steinmaurer (2010).

To the author knowledge few works have been found in
the literature about solar irradiance forecast for Italy
(Mellit and Massi, 2010 and Di Piazza et al., 2013). More-
over no benchmark cases were found for the same country.
This work contributes to fill this gap providing a bench-
mark for the Rome site, obtained with four years data
analysis.

Besides, although the use of the ensemble technique is
very well known and applied in the weather forecast com-
munity, this method has not yet been extensively explored
for the solar irradiance forecast through NWP or ANN
approaches.

The aim of the work presented in the paper was:

1. To develop two models (ST and MOS) for the 24 h
forecast of global horizontal irradiance based on an
ensemble of Artificial Neural Networks (ANN). The
ensemble was generated through an automatic proce-
dure called master optimization process (Photovoltaic
and Solar Forecasting: State of the Art. IEA PVPS
Task 14, 2013).

2. To analyze the dependency of the models on the dataset
used to train and validate the ANN. Thus a cross train-
ing procedure was adopted.

3. To identify the main sources of error of NWP, ST and
MOS models.

4. To evaluate the ST and MOS models performance with
respect to the NWP and the persistence model (used as a
benchmark), for the site of Rome “Tor Vergata” and the
years from 2008 to 2011. The reported performance
results from the average of the yearly performance of
three models (each trained on a different year dataset).
In this way the performance does not depend on the
training year any more.

In Section 2, local measurements and NWP data used to
train and to test the models are presented. In Section 3 the
irradiance site characterization parameters used to analyze
the model performance are reported. In Section 4, the
methodology adopted to develop the forecasting model is
described in detail. Section 5 summarizes the metrics used
to evaluate the forecast performance and the persistence
model used as a benchmark. In Section 6 the reliability
of the models in terms of dependence on training dataset
is studied. In Section 7 the source of errors of NWP and
ST models are analyzed to explain why the MOS model,
that combines the deterministic and statistic approaches,
shows the best performance. Finally in Section 8 models
performance is analyzed with respect to the irradiance site
characterization parameters and compared with the accu-
racy obtained by other forecast models in different EU
countries (Lorenz et al., 2009b).

2. Data description

2.1. Local experimental data and pre-processing

The local experimental data used as input and to train
and test the models come from the ESTER outdoor Labo-
ratory – University of Rome “Tor Vergata” (Spena et al.,
2008). The global horizontal irradiance and the air temper-
ature are measured every minute, from January 2008 to the
end of December 2011 using a secondary standard pyra-
nometer CM21 by Kipp and Zonen and a Platinum resis-
tance thermometer (PT100). The data were filtered
removing not physically consistent measurements due to
monitoring problems. For each day, if no more than 60
consecutive missing samples were encountered, a data
reconstruction by linear interpolation was applied. Other-
wise, if more than 60 consecutive missing samples were
found the whole day was removed from the data set. After
this operation the hourly and monthly data were
calculated.

The data reconstruction was introduced to overcome the
data monitoring system problems yield in underestimation
of the incident irradiance.

2.2. NWP data

The NWP data used come from the European Centre
for Medium-Range Weather Forecasts (ECMWF), an
intergovernmental organization supported by 34 States
that provides forecasts mainly for scientific purposes. The
data collected from the repository MARS (Meteorological
Archival and Retrieval System) belong to the database
called ERA-Interim, Atmospheric Model, Forecast that is
a reanalysis of the atmospheric global covering since
1979. The data taken, identified with id 169 short name
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‘SSRD’ according to the table ECMWF128, correspond to
the surface solar radiation downwards; the aggregate value
comes every 3 hours starting from 00:00 (UTC). The spa-
tial resolution of these data correspond to a cell of
13.5 km � 13.5 km side (0.125� � 0.125�), the maximum
available resolution. To obtain the hourly irradiance, a lin-
ear interpolation over the average 3 h irradiance was per-
formed. The same procedure was also used in Lorenz
et al. (2009a). According to the local measurements the
considered period is between the 1 January 2008 and 31
December2011.

3. Irradiance site characterization parameters

To characterize the irradiance in the specific site and
year, three main parameters are used:

� NADV = Normalized Absolute Daily Variation of the
solar radiation between the day (t) and the day (t � 1).
� NMHV = Normalized Maximum Hourly Variation of

the solar irradiance.
� Kt = clearness index.

NADV and NMHV are introduced in this paper by the
authors while the Kt is a commonly used indicator.

3.1. Normalized daily variation and normalized absolute

daily variation

The normalized daily variation and normalized absolute
daily variation of the solar irradiation are defined as:

NDV ¼ H tð Þ � H t � 1ð Þð Þ
H tð Þ þ H t � 1ð Þ

2

ð–Þ;

NADV ¼ jNDVj ð–Þ ð1Þ
where H(t) and H(t � 1) = irradiation at days t and t – 1.
Fig. 1. PDF of NDV of the horizontal irradiation of four years in Rome.
NADV is an indicator of the persistence of the weather
conditions since it measures the daily irradiation variation
of one day with respect to the previous one. Thus, days
with NADV < 0.2 are considered belonging to stable
weather conditions. Fig. 1 shows the Probability Density
Function (PDF) of NDV of the horizontal irradiation.

It can be observed that small variations of weather con-
ditions between two consecutive days (low NADV) are
much more probable than fast weather changing (high
NADV). In Rome during the reference period the probabil-
ity of stable weather conditions changes from 44% in 2010
(less persistent year) to 64% in 2011 (more persistent year).
In a specific year and site the tendency of the weather con-
ditions to remain the same could be characterized by the
mean value of NADV (mean(NAVD)) and by the standard
deviation of NDV (std(NDV)). Lower values of these
parameters indicate persistent weather conditions. Fig. 2
shows that there is a strong linear correlation between
the persistence index, defined by Eq. (2), and the Normal-
ized Mean Absolute Error (NMAE) obtained by the sim-
plest version of persistence model, see Eq. (3).

P index ¼MeanðNADVÞ � StdðNDVÞ ð2Þ

NMAE ¼
Pn

i¼1jGm
i � GPersistence

i jPn
i¼1Gm

i

ð%Þ ð3Þ

where
Gm

i ¼ measured hourly irradiance ðW=m2Þ.
GPersistence

i ¼ 24 h irradiance forecast obtained by the per-
sistence model (W/m2).

This simple version of persistence model just assumes
that the irradiance of the day (t + 1): ½GPersistence

1 ðt þ 1Þ
. . . GPersistence

24 ðt þ 1Þ� is equal to the measured irradiance
of the day (t): ½Gm

1 ðtÞ . . . Gm
24ðtÞ�.

The good correlation proves that NADV is a good
indicator of weather persistence and the annual forecast
error of the persistence model can be easily estimated using
the Pindex.

3.2. Normalized maximum hourly variation

The normalized maximum hourly variation of the solar
irradiance is defined as:
Fig. 2. Correlation of the Pindex and the NMAE of the persistence model.



Fig. 3. Gpoa = Global Irradiance on the Plane of Array. (Left) variable irradiance day NMHV = 1.36; (right) stable irradiance day NMHV = 0.27.
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NMHV ¼
maxh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP60

min¼1
ðGmin

h �fitðGmin
h ÞÞ2

60

r( )

hGmin
h iday

ð–Þ ð4Þ

where Gmin
h ¼ irradiance at minute ðminÞ of the hour ðhÞ W

m2

� �
,

fitðGmin
h Þ ¼ irradiance at minute ðminÞ obtained by the hour

ly linear fit of Gmin
h

W
m2

� �
and hGmin

h iday ¼ daily average

irradiance W
m2

� �
.

Defining the irradiance measured with one minute time

rate during an hour (h) as the set Gmin
h

� �
min¼1:60

, the linear

fit of fGmin
h g describes the hourly trend of the measured

irradiance. Thus the root mean square error between the
measured irradiance and the one obtained by the linear

fitting: HV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP60

min¼1
ðGmin

h �fitðGmin
h ÞÞ2

60

r
, represents the variation

of the irradiance with respect to the hourly trend. Fig. 3
shows the hourly variations (HV) for a variable and a
not variable day. During clear sky days these variations
are very small (see magenta line in the right picture of
Fig. 3), on the contrary during variable irradiance days
the HV reaches higher values (see magenta line in the left
picture of Fig. 3).
Fig. 4. PDF of NMHV of the horizontal irradiation of four years in
Rome.
Thus the NMHV statistical parameter represents the
maximum fluctuation of the measured irradiance around
the hourly trend with respect to the daily average irradi-
ance and it can be used to describe the daily variability
of the irradiance. In clear sky days it is near to zero
while in overcast days it could reach the value of five
(the daily maximum variation is 5 times the mean daily
irradiance).

Fig. 4 shows the PDF of NMHV of the horizontal irra-
diation. NMHV < 0.4 has been considered as indicator of
days with stable irradiance conditions. It can be observed
that the year with more persistent weather conditions
(2011) has much more stable irradiance days with respect
to other years.

3.3. Clearness index

The Clearness Index is a well known parameter and it
is defined as the ratio between the horizontal daily irra-
diation (H) and the extraterrestrial horizontal irradiation
(Hext):

Kt ¼
H

H ext

ð–Þ ð5Þ

It is strictly related to the stochastic meteorological con-
ditions: days with Kt greater than 0.7 are considered clear
sky days, with Kt between 0.3 and 0.7 are considered partly
cloudy while days with Kt lower than 0.3 are considered
overcast days. Fig. 5 shows the PDF of Kt for the reported
period. It can be pointed out that year with more persistent
weather conditions (2011) has much more clear sky days
with respect to other years.

4. Methodology

4.1. Description of the models

To develop the ST and MOS models, the Multi-Layer
Perceptron Neural Network architecture (MLPNN), with
one hidden layer, was used. This architecture, synthetically
reported in Fig. 6, uses meteorological parameters to fore-
cast the one day ahead hourly irradiance:



Fig. 5. PDF of clearness index (Kt) of four years in Rome.

Fig. 7. Pearson correlation between the input parameters measured at day
t and the irradiation (H) measured at day t + 1, for the considered period.
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Gh1 t þ 1ð Þ; . . . Gh24 t þ 1ð Þ½ � ¼ f ðmeteorological parametersÞ
ð6Þ

The input meteorological parameters come only from
past local measurements (in the case of the ST model) while
in the case of the MOS models also NWP variables are
used as input.
4.2. Input meteorological parameters

A variety of meteorological parameters, coming from
ground measurements (for ST models) and NWP products
(for MOS model), has been used in the literature as input of
MLPNN. Among these meteorological parameters it can
be evidenced: the daily average temperature (Chaouachi
et al., 2009; Mellit and Massi, 2010 and Wang et al.,
2012); the max and min daily temperature, the daily aver-
age humidity, the vapor pressure, the cloud cover, the sun-
shine duration (Chaouachi et al., 2009); the hourly
irradiance (Chaouachi et al., 2009) and the daily average
irradiance (Wang et al., 2012); pressure, nebulosity and
precipitation (Voyant et al., 2013), zenith angle (Marquez
Fig. 6. Sketch of the MultiLayer Perceptron Neural Network (MLPNN)
architecture. P1: input vector with R rows. For i-layer, IWi: input weights,
LWi: layer weights, bi: bias vector, Si: number of neurons, ai: output
vector, fi: transfer function (f1 = tansigmoid, f2 = pureline).
and Coimbra, 2011; Huang et al., 2010). From the NWP
forecast variables, it can be found: sky cover (defined as
the expected amount of opaque clouds, in percent, covering
the sky, valid for the indicated hour), probability of precip-
itation, minimum temperature (Marquez and Coimbra,
2011), daily average temperature (Huang et al., 2010;
Yona et al., 2008) and irradiance (Huang et al., 2010).

In particular it should be underlined that Wang et al.
(2012) used also two statistical parameters similar to the
above reported NDV and NMHV as input of their NN
model. In the present case, worst forecasting accuracy
was found including these input parameters. In Voyant
et al. (2013) a statistical investigation of different possible
input variable was performed, while in Marquez and
Coimbra (2011) a Gamma test combined with a Genetic
Algorithm were used to select the best NWP input set for
their MOS.

Since the final objective of the work is to forecast the PV
energy production, all the inputs of the reported forecast-
ing models should be variables that are commonly mea-
sured by the medium–large size PV plant monitoring
systems. On the other hand, as pointed out in Voyant
et al. (2013), the input meteorological parameters measured
at the present day (t) should be strongly correlated with the
irradiation of the next day (t + 1). Thus the Ordinal Day
number (OD, defined as the day of year ranging from 1
to 366), the daily irradiation (H), the average daily temper-
ature (Ta) and the clearness index (Kt) measured at time t

have been chosen as input of the MLPNN models. Fig. 7
shows the Pearson correlation (Eq. (7)) between the daily
irradiation (H) measured at day t + 1 and the daily irradi-
ation (H), the average daily temperature (Ta), the clearness
index (Kt) measured at day t.

The Ordinal Day number (OD) has been included since
it takes into account the astronomical information (such as
the yearly variations of sunrise and sunset hours). For the
MOS model also the daily irradiation forecast (HNWP) pro-
vided by the ECMWF database, was used as input of the
neural network. The models were developed using the
ANN MatLab Toolbox.

Fig. 8 summarizes the basic feature and the nomencla-
ture of the two MLPNN architectures used for the fore-
casting models.



Fig. 8. Statistical model NN architecture (STNNS) and MOS model NN architecture (ECMWF-MOSNNS). The number S indicates the optimal number
of neuron in the hidden layer coming from the master optimization process.
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4.3. Master optimization process

4.3.1. Research of the optimal number of neurons of the

hidden layer
The first step of the procedure was to automatically

define the optimal number of neurons of the hidden layer
(Soptimal).

For each S (that goes from 1 to 40) the Repeated Ran-
dom Sub-sampling Validation procedure (RRSV),
described in Fig. 9, is repeated one hundred times
(N = 100). It was tested that the partition of one year data
sample into 60% days for training and 40% of days for val-
idation was the one that produced the best performing
model. The same result was found in Marquez and
Coimbra (2011).

After the RRSV procedure, the performance of the
MLP with S neurons was evaluated through the average
value of the Mean Square Error MSE(i) over all the 100
iterations: MSEavg(S). From Fig. 10, it appears that for
these models, the MSEavg(S) has a minimum. On the other
Fig. 9. RRSV procedure scheme.
hand, it is well know that the ANN loses its ability of
generalization when the number of neurons is increased.
Thus, between all the ANNs that have a MSEavg(S) near
the minimum (below a fixed threshold), the optimal
model is the one that has the minimum number of neurons
(Soptimum). In the present case a threshold of 1% above the
minimum of MSEavg was chosen.

The optimal number of neurons in the hidden layer for
the STNN model was found between 5 and 8 while for the
MOSNN model between 6 and 14, depending on yearly
data set used for training and validation.

4.3.2. Generation and selection of a qualified ANN Ensemble

Once the best number of neurons (Soptimum) was identi-
fied, the second step of the procedure consisted in the ANN
optimization. Iterating the RRSV procedure five hundred
times, 500 ANNs were generated. Instead of choosing the
ANNoptimal as the one who showed an MSE(i) ffiMSEavg,
a qualified ensemble of ANN was selected. It was found
that the best ensemble should contain all the ANN with
a MSE(i) below the MSEavg (see Fig. 11). Each Neural
Network in the Ensemble is a predictor and the result of
each predictor on the test year data is a forecasting trajec-
tory. The ensemble result is the average of all the predictor
trajectories. The average over the ensemble tends to miti-
gate the noise produced by each predictor, resulting in a
much more regular trajectory that better fits the experimen-
tal data.

This ensemble mean trajectory improved the perfor-
mance from 0.5% to 2.5% with respect to the performance
of the ANNoptimal, depending on the persistence of the
weather. The less persistent is the test year, the greater is
the ensemble performance improvement. For each model
the number of ANN that belongs to the selected ensemble
is around 300–350 ANN. Similar results were found in
Chaouachi et al. (2009), but the potentiality of this tech-
nique was not completely investigated.

Moreover the ensemble technique allowed to calculate
the quantile trajectories [P(5),. . .P(100)]: for each hour of
the test year, the experimental Cumulative Distribution



Fig. 10. The mean MSE realized during the RRVS procedure vs the
number of the hidden layer neurons (S).
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Function (CDF) was calculated so that the P(50) point is
the value Gh(50) such that the probability of Gh 6 Gh(50)
is equal to 50%. The quantile trajectories could be used also
to correct systematic errors of the model. For example,
Fig. 12 shows an underestimation at high irradiance level
and an overestimation at low irradiance. It was verified
that the P(60) trajectory was able to reduce this model
error, providing an outperforming forecast with respect
to the mean trajectory. For this reason, in the present case,
the P(60) trajectory was used.
4.3.3. Prediction intervals

Through quantile trajectories it is possible to estimate
the confidence interval of the prediction, so that the irradi-
ance has the 95% of probability to be between the P(5) and
the P(100) curves. In Fig. 13 it can be noted that for clear
sky days the distance between the trajectory P(5) and
P(100) is smaller than the one predicted for partially cloudy
and overcast days.

Similar behavior of the forecasting errors was found in
Lorenz et al. (2009a) and Marquez and Coimbra (2011)
using a different way to estimate the forecasting uncer-
tainty. Indeed, the authors assume a normal distribution
Fig. 11. Ensemble sel
of the residuals, with zero expected value and a site depen-
dent variance.
5. Accuracy metrics and benchmarking model

According to the solar irradiance forecast literature, the
following metrics are used to evaluate the models
performance:

1. Pearson correlation index

Corr ¼
Pn

i¼1ðGm
i � GmÞðGf

i � Gf ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðGm

i � GmÞ2
Pn

j¼1ðG
f
j � Gf Þ

2
q ð–Þ ð7Þ

2. Root mean square error

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðGm

i � Gf
i Þ

2
q

n
W

m2

� �
ð8Þ

3. Mean absolute error

MAE ¼
Pn

i¼1 Gm
i � Gf

i

		 		
n

W

m2

� �
ð9Þ

4. Mean bias error

MBE ¼
Pn

i¼1 Gm
i � Gf

i

� �
n

W

m2

� �
ð10Þ

where Gm
i ¼ measured hourly irradiance ðW=m2Þ and

Gf
i = forecasted hourly irradiance (W/m2).
The RMSE accentuates the greater forecasting errors

while the MAE is exactly the measure of the unbalanced
energy with respect to the total PV electricity fed into the
grid. Bias error describes systematic deviation of the fore-
cast. The normalized error indexes: NRMSE, NMAE and
NMBE are calculated dividing by the measured irradiance
averaged over the considered period. All the above perfor-
mance indices are calculated excluding the night values.
ection procedure.



Fig. 12. Kolmogorov–Smirnov test and mean bias error of the P(50) ECMWF-MOSNN14Tr2011 model (trained on 2011) tested on the 2010.

Fig. 13. Prediction intervals from P(5) to P(100) (gray) – forecast P(60) (white) and ground measurements (black dots).
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The forecast performance on a fixed horizon, essentially
depends on site and year. To compare the accuracy
obtained by different models in different sites or years a ref-
erence model is used. If the reference model has similar per-
formance (with respect to a specific metric) in two different
sites or years then the two weather conditions can be con-
sidered comparable. Thus also accuracy of different fore-
cast models calculated by the same metric can be
compared. The skill score (Beyer et al., 2009) is less site
and year dependent and it allows to evaluate which fore-
casting model outperforms.

The most common reference model used in the solar
forecast sector is the Persistence Model (PM). This is a triv-
ial model that assumes that the forecast weather conditions
are the same of the ones of the previous day. Obviously all
the forecast models should outperform the persistence.
There are several version of PM (Beyer et al., 2009). In this
work, to compare the performance of the models to the one
reported in Lorenz et al. (2009b), the following PM model
is adopted:

Gh tþ1ð Þ; . . .Gh24 tþ1ð Þ½ � ¼ hK�t ðtÞi Ghcs1 tþ1ð Þ; . . .Ghcs24 tþ1ð Þ½ � ð11Þ

where
hK�t tð Þi = daily average of the hourly clear sky index of
the day (t).
Ghcs1 t þ 1ð Þ; . . . Ghcs24 t þ 1ð Þ½ � = Clear Sky irradiance of

the day (t + 1).
Ghcs is calculated using the Clear Sky model (Ineichen and
Perez, 2002; Reno et al., 2012).

Thus the improvement (skill score with respect to the
RMSE metric) can be evaluated for different years with
the following formula:

Irmse ¼ 100
RMSEðPMÞ �RMSEðmodelÞ

RMSEðPMÞ

� �
ð%Þ ð12Þ
6. Reliability of the models

To analyze the model dependence on the yearly data
used for training, a cross training procedure was adopted.
The procedure consisted in developing four ST and four
MOSNN models using a different training year, namely:
STNN7Tr2008, STNN5Tr2009, STNN7Tr2010, STNN8
Tr2011, and ECMWF-MOSNN7Tr2008, ECMWF-MOS-
NN6Tr2009, ECMWF-MOSNN10Tr2010, ECMWF-
MOSNN14Tr2011. Then for each year used to test, the
performance of three models were evaluated. For instance,
to forecast the irradiance of 2008, the models trained on
2009, 2010 and 2011 were used.

Fig. 14 shows the maximum difference between the
NMAE of the best model and the NMAE of the worst
model realized on the test year. It appears that for the ST
model such difference reaches 1.7% while for the MOSNN



Fig. 14. Normalized mean absolute errors of STNN and ECMWF-MOSNN models for the four years tested.

Fig. 15. Scatter plots and Pearson correlation coefficient (CORR) between the measured and forecast on a daily and hourly basis.
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Fig. 16. Daily irradiation and hourly irradiance forecasting errors of
different models.
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model is lower than 0.5%. Thus the models are reliable since
they show just a small dependence on the training years. On
the contrary, the models performance depends almost line-
arly on the persistence model error. Besides it was tested
that the performance increased with two year training per-
iod while the dependence on the training period decreased.

It should be remarked that the performance of the mod-
els (STNN and ECMWF-MOSNN) that will be discussed
in the next section, was evaluated as the average accuracy
of the three models on the test year. In this way the models
performance did not depend on the training dataset.
7. Analysis of error sources

From the statistical point of view, two different sources
of forecast errors impact the daily MAE: one is in the pre-
diction of the daily irradiation (H) and the other is the pre-
diction of the hourly irradiance (G) distribution once the
irradiation is fixed. Obviously, these sources are not inde-
pendent. A considerable daily MAE reduction could be
achieved if an accurate irradiation forecast is provided,
while even improving the ability to forecast the irradiance
distribution, no MAE reduction can be reached if the
irradiation prediction is not correct. The daily Mean Bias
Fig. 17. RMSE and MAE of models vs R
Error (MBE) is the measure of the irradiation forecast

capability: MBE ¼
Pn

i¼1
Gm

i �Gf
ið Þ

n ¼ Hm�Hfð Þ
n (where n is the

number of diurnal hours) while the daily Standard Devia-
tion of the residuals is the measure of the hourly forecast
error: SDE = (RMSE2 �MBE2)1/2. In the NWP, the irra-
diance distribution forecast is negatively affected by the
spatial and temporal resolution so that it could be effi-
ciently improved by the MOS models.

The scatter plots and the Pearson correlation coefficient
allow to point out these two error sources in a more visual
way.

Fig. 15 shows the scatter plots of the measured and fore-
cast daily irradiation and hourly irradiance, of the
ECMWF, STNN8Tr2011 and ECMWF-MOSNN14Tr2011
models tested on the year 2010. In the graphs also the
Pearson correlation coefficient is shown (CORR).

For the ECMWF model a loss of 0.06 in correlation
appears passing from daily irradiation (Hh) forecast to
hourly irradiance forecast (Gh), see Fig. 15a. Thus the main
source of error of the ECMWF NWP data is in the hourly
values prediction, induced by site effects and low output
time resolution (3 h interval output data).

On the contrary, the STNN model realizes almost the
same correlation in the forecasting of the daily irradiation
or of the hourly irradiance as showed in Fig. 15b. Indeed
the statistical model mainly fails in the daily irradiation
forecast showing a slow reaction to the changing of daily
weather conditions. It could not forecast sudden changing
in the irradiation since in this case the correlation between
the forecast irradiance and the past meteorological param-
eters used as input, falls down dramatically. On the other
hand this model is able to provide a very good forecast
of the hourly irradiance using the real day irradiation as
input. In this case, it has been proved that the correlation
between measured and forecast hourly irradiance grows
up to 0.96 with and RMSE around 70–75 W/m2. This is
the limit of accuracy that could be reached by the reported
MOSNN model when a perfect daily irradiation forecast is
provided (here called: MOSNN limit case).
MSE and MAE of persistence model.



Table 1
Comparison of accuracy between persistence, ECMWF-NWP and ECMWF-MOSNN.

Test year Persistence ECMWF-NWP ECMWF-MOSNN Persistence ECMWF-NWP ECMWF-MOSNN ECMWF-NWP ECMWF-MOSNN
RMSE
(W/m2)

RMSE
(W/m2)

RMSE
(W/m2)

MAE
(W/m2)

MAE
(W/m2)

MAE
(W/m2)

MBE
(W/m2)

MBE
(W/m2)

2008 157.1 123.2 112.6 100.8 92.7 71.7 15.6 �17.9
41% 32% 29% 26% 24% 19% 4% �5%

2009 145.0 120.6 104.6 94.5 90.8 67.4 25.8 �1.9
37% 31% 27% 24% 23% 17% 7% �0.5%

2010 159.7 120.2 110.1 108.6 91.7 74.4 15.7 �17.5
43% 33% 27% 30% 25% 20% 4% �5%

2011 137.7 114.3 96.4 85.9 88.4 62.9 30.6 5.6
35% 29% 24% 22% 22% 16% 8% 1%

Fig. 18. Improvement with respect to the RMSE for the considered
period.
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Since the deterministic and statistic approaches have
different sources of errors in their forecasting outputs,
each method could reduce the error of the other and vice
versa. For this reason the MOSNN model always shows
the best performance, evidenced in Fig. 15c. The main
contribution of the NWP data to the MOSNN perfor-
mance is related to the good prediction of the daily hor-
izontal irradiation, while the contribution of the
statistical ANN model is related to the best hourly irradi-
ance prediction.

Fig. 16 summarizes the above considerations reporting
the daily irradiation and the hourly irradiance forecasting
error (|MBE| and (STD)) of the different models averaged
over the considered period. It is shown that the STNN pro-
duces similar error in the prediction of the irradiation and
of the irradiance. On the other hand, the greatest error of
the ECMWF-NWP is found in the hourly irradiance distri-
bution forecast. The MOSNN provides just a small correc-
tion of the irradiation forecast with respect to the NWP,
while it greatly improves the irradiance forecast accuracy
reaching almost the MOS limit case. Thus to achieve a fur-
ther improvement of the forecast performance a reduction
of the daily bias of the NWP is required. More investiga-
tions should be done in this direction.
8. Results

8.1. Performance analysis

Fig. 17 and Table 1 summarize the main performance
indices of the models. It appears that with respect to the
NWP, the STNN model realizes a high RMSE (9–18%
more) while the MOSNN model obtains an RMSE reduc-
tion (9–16% less). In terms of MAE, the NWP and the
STNN models show a similar behavior, realizing a MAE
even greater than the persistence model for the less variable
year 2011. On the other hand the MOSNN model realizes a
great MAE reduction with respect to the NWP data (29–
19% less).

Fig. 18 shows the improvement of the models with
respect to the RMSE of persistence model (Eq. (12)). It
can be observed how the improvement is much less time
dependent. For the NWP it ranges between 15% and
25%, while for the STNN model is around 10% and for
MOSNN model is around 30%.

Lorenz et al. (2009b) find a relative RMSE of different
MOS forecasting model ranging from 40% to 60% for the
Central European Stations and from 20% to 35% for the
South of Spain. The reported results obtained for the
Rome Station match these benchmarks since the relative
RMSE ranges between 25% and 30%.

In particular Table 2 summarizes the benchmark accu-
racy values reported by Lorenz et al. (2009b) for Southern
Spain and the Swiss stations, compared to the one obtained
for ECMWF-MOSNN model for the Rome station. To
compare the results, first of all the persistence model accu-
racy should be analyzed. In terms of RMSE and MAE the
persistence model realizes similar values for Rome and for
the Swiss stations. This means that Switzerland and Rome
present comparable climatic irradiance behavior (with
respect to these metrics), and so similar difficulties in solar
forecasting can be found. This consideration has also been
confirmed by a previous work (Cornaro et al., 2010). Com-
paring the results, it should be noted that the benchmark
models provide a RMSE of 107–122 W/m2 and a MAE
of 70–85 W/m2 with a persistence error of 158 W/m2 and



Table 2
Summary of the benchmark accuracy values reported by Lorenz et al. (2009b) for Southern Spain and Swiss stations and MOSNN accuracy for the Rome
station.

RMSE (W/m2) MAE (W/m2) MBE (W/m2)

Southern Spain Forecast models 81–124 48–79.8 1–58.9
(20.8–31.7%) (12.2–20.4%)

Persistencea 125.88 65 2.44
(32.1%) (16.6%)

Rome ECMWF-MOSNN 106 69 �7.9
(26.7%) (18.0%)

Persistenceb 150 97.4
(39.0%) (25.0%)

Switzerland Forecast models 107–122 70–85 �1 to �18
(39.6–45%) (25.8–31.5%)

Persistencea 158 104 �17
(58.4%) (38.7%)

a Average performance on different meteorological stations for the period July 2007–June 2008.
b Average performance on different years 2008–2011.

Fig. 19. Seasonal NMAE comparison for the considered period.

Table 3
Seasonal accuracy averaged over the reference periods.

Season Persistence ECMWF-NWP STNN ECMWF-MOSNN

NMAE (%) NMAE (%) NMAE (%) NMAE (%)

Winter 38 31 38 27
Spring 28 23 27 20
Summer 15 18 12 11
Autumn 34 32 33 25

Fig. 20. Models RMSE calculated for different target day features.
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104 W/m2. In the year 2008 the ECMWF-MOSNN model
realizes a RMSE of 112.6 W/m2 and a MAE of 71.7 W/m2

with a persistence error of 157 W/m2 and 101 W/m2. Thus
the results obtained by the MOSNN model can be consid-
ered in the range of the one obtained using different
approaches for the Swiss stations.

The forecast performance realized by the reported
ECMWF-MOSNN model is very similar to the accuracy
obtained by the best MOS model, the ECMWF-OL model,
developed by Lorenz et al. (2009a,b). On the contrary the



Fig. 21. Correlation obtained for the MOSNN model on all the days (left) and only on stable irradiance days (right).
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reported ensemble technique to estimate the prediction
interval is not so well performing. Indeed only 58% of the
measured irradiance values are found to be inside the
P(100)–P(5) trajectories, while almost 95% was expected.
Thus the prediction intervals are underestimated resulting
in a DGrel ¼ 9% (Eq. (13)). Using the method developed
by Lorentz et al. 2009b all the measured values were found
inside the prediction intervals but with a DGrel ¼ 28%.

DGrel ¼
XN

i¼1
½P i 100ð Þ � P i 5ð Þ�=4

XN

i¼1
Gm

i ð13Þ

The ANN Ensemble does not explore enough prediction
trajectories, since the ANN are not able to sensibly modify
the daily irradiation values. Indeed all the trajectories of
the MOS model provide a daily irradiation near to the
one predicted by the NWP. This produces narrow predic-
tion intervals. Further studies should be done to overcome
this problem.
8.2. Seasonal analysis

Fig. 19 shows the seasonal performance of the models
for the years: 2008–2011, while Table 3 reports the seasonal
accuracy averaged over the reference periods.

The NWP realizes higher NMAE with respect to the
persistence in summer time, due to high errors in hourly
irradiance forecast. The STNN model obtains a NMAE
comparable to the persistence in Winter, Spring and
Autumn. For the same periods the STNN shows worst per-
formance with respect to the NWP, due to the higher errors
in the daily irradiation forecast.

The MOSNN model shows always the lower NMAE
ranging between 11% in Summer and 27% Winter.

Fig. 20 shows RMSE of the models calculated for the
different target day features described in Section 3. As
expected, the ECMWF model shows lower performance
for clear sky, stable weather and stable irradiance days,
since for these days, the hourly irradiance forecasting
errors due to low spatial and time resolution have a greater
impact on the RMSE. On the contrary the NWP obtains
the lower RMSE for the overcast days since in this case
the correct daily irradiation prediction is much more
important than the forecast of the hourly irradiance distri-
bution. For the opposite reasons the STNN model shows
the worst performance in the irradiance prediction of the
overcast, unstable weather and variable irradiance days.

Fig. 21 reports the correlation between the MOSNN
model results and the measurements for all the days (left)
and only for stable irradiance days (right) of the test year.
It can be observed that the overestimation data at low irra-
diance level is almost completely removed in the stable irra-
diance days. Indeed the model provides the best envelope
of the hourly irradiance distribution for a given daily irra-
diation but cannot forecast the irradiance fluctuation due
to clouds motion. Moreover it is more probable to find
events with lower irradiance with respect to the predicted
value (shading of the sun disc due to clouds) than with
higher irradiance (see Fig. 12). This effect produces an irra-
diance overestimation. This phenomenon does not affect
the days with stable irradiance (clear sky or permanently
overcast).
9. Conclusions

In this paper two models developed to forecast the
hourly solar irradiance with 24 h in advance are described.
The first one is a statistical model (STNN) that uses only
ground measurement data for the prediction. The second
one is a Model Output Statistic model (ECMWF-MOS-
NN) that corrects the ECMWF-NWP data coming from
the European Center of Medium Weather Forecast using
ground measurements.

The models are based on ensemble of Artificial Neural
Networks (ANN). The master optimization process used
to optimize the number of neuron in the hidden layer
and to select the ANN Ensemble is reported in detail.
The ensemble technique is also used to provide a prediction
interval. The models are trained and validated using one
year data measured at the ESTER Laboratory of the
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University of Rome “Tor Vergata”. A cross-training proce-
dure, based on four years of data, was used to study the
dependence of the models performance on the dataset used
to train and validate the ANN. It has been proved that the
models are reliable and self improving since their perfor-
mance does not depend on the training year. The models
accuracy could be also improved increasing the training
period.

The performance of STNN, ECMWF-NWP and
ECMWF-MOSNN models were compared to the bench-
mark persistence model. The statistical model STNN
showed greater RMSE than ECMWF-NWP while similar
NMAE was found. Even if the MBE of the STNN model
was of 1.1% while the MBE of the NWP was of 5.7%,
the improvement with respect to the RMSE of the persis-
tence model was around 10% for STNN and 15–25% for
the NWP model. This performance is due to different
sources of forecast errors. The NWP model provides a very
good forecast of the daily irradiation but it fails in the
hourly irradiance prediction because of the low spatial
and temporal resolution. On the other hand, the ST model
is able to provide a good hourly forecast but it could not
well predict the daily irradiance in unstable weather condi-
tions. Thus each method contributes to reduce the error of
the other and vice versa. For this reason the ECMWF-
MOSNN showed the best performance, with a RMSE
improvement of 30%, with respect to the persistence model.

Switzerland and Rome present similar difficulties in
solar forecasting since the same persistence model accuracy
was measured. The results obtained by the MOSNN model
(RMSE = 106 W/m2 and MAE = 62 W/m2) can be consid-
ered perfectly in the range of the one obtained with differ-
ent approaches for the Swiss stations (Lorenz et al., 2009b)
(RMSE = 107–122 W/m2 and MAE = 70–85 W/m2).
While the forecast performance of ECMWF-MOSNN is
very similar to the ECMWF-OL model developed by
Lorenz et al. (2009a,b), the prediction intervals are not so
well estimated. Further investigations should be done to
improve the reliability of the prediction intervals.
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