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Twenty-Four Hour Solar
Irradiance Forecast Based
on Neural Networks and
Numerical Weather Prediction
In this paper, several models to forecast the hourly solar irradiance with a day in
advance using artificial neural network techniques have been developed and analyzed.
The forecast irradiance is the one incident on the plane of the modules array of a photo-
voltaic plant. Pure statistical (ST) models that use only local measured data and model
output statistics (MOS) approaches to refine numerical weather prediction data are
tested for the University of Rome “Tor Vergata” site. The performance of ST and MOS,
together with the persistence model (PM), is compared. The ST models improve the per-
formance of the PM of around 20%. The combination of ST and NWP in the MOS
approach gives the best performance, improving the forecast of approximately 39% with
respect to the PM. [DOI: 10.1115/1.4029452]
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1 Introduction

The forecast of the solar energy production is becoming a key
issue for many countries that have to deal with a consistent amount
of electricity produced by renewable sources. In particular, the 24/
72 hr horizon forecast is essential for transmission scheduling and
day ahead energy market. Also Italy, with its 16.7 GWh of photo-
voltaic (PV) energy production in 2012, is starting to deal with
some criticisms of the integration of the PV plants into the national
grid. In particular, the Italian regulatory system, in 2012, proposed
a norm that provides a penalty if the PV production forecast is 15%
higher than the real production in terms of normalized mean abso-
lute error (MAE) between forecast and real data.

For these reasons, papers dealing with the forecast of solar
energy for this specific application are growing fast in the
literature.

In general, the techniques to forecast the solar radiation or PV
production on the 24/72 hr horizon can be divided in three mains
groups [1,2]:

(1) NWP models
(2) ST models
(3) MOS

The NWP models [3] are essentially based on the numerical
integration of coupled differential equations that describe the
dynamic of the atmosphere and radiations transport mechanisms.

This technique is based on deterministic physical models.
Although they are very reliable models, however, they show two
main problems: the nonlinearity of the used equations and the spa-
tial resolution of the integration grid (from 100 km2 to few km2)
that is too wide with respect to the PV plants size. Inside the grid
cell, the cloud cover and aerosols are considered as average values
thus great errors could be induced both in the amount and in the
time of the forecast irradiance at the PV site. Besides, many NWP
models have a temporal output interval greater than 1 hr while, as
in this case, the hourly irradiance forecast is required. Just to cite
an example, Perez et al. [4] presented an extensive validation of
short and medium term solar radiation forecast for various sites in
the U.S.

The ST models are based on methods to reconstruct the rela-
tions between the hourly irradiance and past meteorological pa-
rameters (cloud ratio (CR), air temperature, relative humidity,
pressure, etc.) or past irradiance observations. The most used
models for the 1 day horizon irradiance forecast are based on
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artificial neural networks (ANN). With this method, the forecast
could be achieved by fast simple algorithms that use only local
meteorological measurements [5–7] and ST feature parameters
[8]. Thus, on one hand, ST models do not suffer from spatial and
temporal resolution problems. On the other hand, they are not able
to provide a good forecast in unstable weather conditions, since in
these cases the correlation between the irradiance and the input
variables rapidly falls down and consequently the models are not
able to adequately learn in the training phase.

The MOS approach combines both NWP and ST models [9,10].
The first one is used for the forecast, while the second allows to
correct the site effects through local measurements. A variety of
MOS techniques, which use ST postprocessing of the NWP output
and stochastic learning techniques, have been developed by vari-
ous authors. An ST postprocessing correction of the bias errors of
the European Centre for Medium-Range Weather Forecast
(ECMWF)-NWP data was proposed in Ref. [11]. This seems to be
the most performing MOS for global irradiance forecast as evi-
denced in Ref. [12].

Most of the papers in the literature that explore the use of ANN
with MOS techniques are focused on the solar irradiance forecast,
however, some authors use ANN with MOS also to directly fore-
cast the PV plant production as it can be found in Refs. [10], [13],
and [14]. Most of the examined literature that uses ANN and/or
MOS techniques with ANN is referred to analysis and forecast
over few days data samples and not on a year (that is usually the
used benchmark period), so it is not easy to make a direct compar-
ison of the results obtained by other authors. The intent of this
work is to evaluate the forecast potentiality of ST and MOS based
on ANN and NWP with a horizon of 24 hr for the site of Rome
using almost 2 yr of data available at the ESTER lab of the Uni-
versity of Rome “Tor Vergata.” The NWP data used in the MOS
come from the ECMWF [15]. The results, obtained by four ST
models based on different kinds of neural networks algorithms
that use only in situ measurements, are reported. The forecasts
obtained by four different MOS, which use NWP data and local
measurements as input of ANN, are also analyzed. It appears that
the deterministic and statistic approaches have different sources
of errors in their forecasting outputs and the combination of the
two can sensibly improve the forecast performance. Thus, all the
MOS techniques provide similar and better results.

It should be remarked that the majority of the works in the fore-
casting literature provide the prediction of the global horizontal
irradiance (GHI) while to forecast the PV energy production the
irradiance on the POAs is required. Thus, the transposition factor
from the horizontal plane to POA introduces an additional error in
the forecast. For this reason, all the presented models directly pro-
vide the forecast of the POA irradiance.

2 Data Description

2.1 Local Experimental Data and Preprocessing. The local
experimental data used as input and to train and test the models
come from the ESTER outdoor Laboratory—University of Rome
“Tor Vergata” (41.18556 deg latitude north, 12.6233 deg longi-
tude east, and altitude 100 m) [16]. The global irradiance used for
the forecast is the one measured on the plane of PV modules
(POA) exposed at ESTER lab from January 2009 to the end of
October 2010. The tilt angle was changed every month to opti-
mize the normal incidence at noon and the overall energy collec-
tion of the module during the month. In particular, the global and
diffuse horizontal irradiance, the global POA irradiance, air tem-
perature and the energy produced by a c-Si module (Kyocera KC
125) were measured each minute during the considered period.
Irradiance was measured by three Kipp&Zonen CM21 pyranome-
ters, while air temperature by a Rotronic thermohygrometer with
1-min time rate.

The data were filtered removing the not physically consistent
measurements due to monitoring problems or instrument
malfunctions.

According to Ref. [17], a quality control procedure was applied
based on a plausible value check and a time consistency check.
The aim of the first check was to verify if the values of instantane-
ous data were within acceptable range limits:

• GHI: 0 W/m2 to 1600 W/m2

• Diffuse horizontal irradiance (DHI): 0 W/m2 to 1600 W/m2

• Global POA irradiance (GPOA): 0 W/m2 to 1600 W/m2

• Air temperature (Ta): �20 �C to 80 �C.

The first quality check removed 4688 records over 905,425 data
(including night values).

The aim of the second check was to verify the rate of change of
instantaneous data (detection of unrealistic jumps in values or
“dead band” caused by blocked sensors). The persistence test and
the step test were applied. In the persistence test, if the 1-min val-
ues did not vary over the past 60 min by more than the specified
limit (a threshold value) then the current 1-min value failed the
check. The threshold values were:

• Ta: 0.01 �C
• DHI: 0.01 W/m2

• GPOA and GHI: 0.02 W/m2.

In the step test, if the current instantaneous value differed from
the prior one by more than a specific limit (step), then the current
instantaneous value failed the check. The limits were:

• Ta: 3 �C
• GPOA, GHI, DHI: 1000 W/m2.

The second quality check removed 4381 records over 905,425
data (including night values).

For each day, data reconstruction by linear interpolation was
applied if no more than 60 consecutive missing samples were
encountered; otherwise, the whole day was removed from the data
set. After this operation, the hourly and monthly data were
calculated.

The data reconstruction was introduced to overcome the data
monitoring system faults that bring to underestimation of the pro-
duced energy.

At the end of the preprocessing, a total of 124 days over 2 yr
(2009 and 2010) were missing or discarded.

2.2 NWP Data. The NWP data are the output of the ERA-IN-

TERIM model that is the latest global atmospheric reanalysis soft-
ware produced by the ECMWF [15]. In particular, they consist of
a 24 hr horizon forecast of the horizontal global solar radiation.
The spatial resolution of these data correspond to a cell of
13.5 km� 13.5 km side (0.125 deg� 0.125 deg), the maximum
available resolution. The temporal output interval is 3 hr; thus, for
each day, the data contain eight forecasts of the cumulative inte-
gral of horizontal global irradiance starting from midnight UTC.
According to the local measurements, the considered period is
between the January 1, 2009 and October 31, 2010.

Almost all the developed ANN models used the daily irradia-
tion as input, thus the NWP time resolution was not a concern. As
it will be described later in the paper, only one model used the
hourly forecast irradiance thus to obtain these values a linear
interpolation over the average 3 hr irradiance was performed. This
simple procedure is less accurate than the interpolation of the
clear sky index as pointed out by Ref. [11], nevertheless, the ANN
model was able to correct this further systematic error.

3 Models Input Parameters

Since the final objective of the work is to forecast the PV
energy production, all the inputs of the reported forecasting mod-
els should be variables that are commonly measured by the
medium–large size PV plant monitoring systems. Besides, these
parameters need to be strongly correlated to the irradiance of the
day ahead; as proven by other authors that made sensitivity analy-
sis [7] or used dedicated algorithms for input selection [18].
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Moreover, also two ST parameters similar to the one used by
Ref. [8] were considered in this study to verify the possibility of
forecast improvement.

For each day, the hourly solar irradiance features (Gpoa1–
Gpoa24), to be forecasted, have been characterized by the following
five parameters:

• OD¼ ordinal day
• Hh and Hpoa¼ daily global irradiation on horizontal and

POA (kWh/m2)
• CR¼ cloud ratio
• NMHV¼ normalized maximum hourly variation of the solar

irradiance
• NADV¼ normalized absolute daily variation of the solar

radiation between the day (t) and the day (t� 1).

The OD takes into account for the yearly variations of sunrise
and sunset hours.

The Hh and Hpoa are the integral of hourly solar irradiance and
depict both the yearly solar energy variation and meteorological
features of the day. Besides, the Hpoa takes into account orienta-
tion and tilt of the PV plane.

The CR is defined as the ratio between the horizontal diffuse
(Hsh) and global (Hh) daily irradiation

CR ¼ Hsh

Hh
(1)

This parameter is strictly related to the stochastic meteorologi-
cal conditions. For CR< 0.4, the day could be considered clear
while CR> 0.4 indicates overcast days. It requires specific meas-
urements of the diffuse irradiance that are not always available at
the PV plant, but for practical applications it could be replaced by
the clearness index Kt, defined as the ratio between the global
irradiance on the horizontal plane at the ground and the extra
atmospheric irradiance evaluated on the horizontal plane. Also the
clear sky index (Kcs) in which the extra atmospheric irradiance is
substituted by the clear sky model can be a good indicator of the
weather conditions.

The NMHV of the solar irradiance is a new index defined by
the authors and is written as

NMHV ¼

maxh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX60

min¼1

ðGmin
h � fitðGmin

h ÞÞ
2

60

vuuut
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h >day

(2)

where Gmin
h ¼ irradiance at minute min of the hour hðW=m

2Þ,
fit Gmin

h

� �
¼ linear fit of Gh

minðW=m
2Þ, and <Gmin

h >day¼ daily

average irradiance ðW=m
2Þ

The NMHV is calculated fitting the data inside each hour with
a linear trend (fit Gmin

h

� �
) and then evaluating the root mean square

(RMS) between the fit results and the real data (Gmin
h ). NMHV is

the maximum value of hourly RMS calculated in the day, normal-
ized by the average daily irradiance (< Gmin

h >day). This ST
parameter represents the maximum fluctuation of the measured
irradiance around the hourly linear trend with respect to the daily
average irradiance and it is used to describe the daily variability
of the irradiance. In clear sky days, it could be near to zero while
in high variable days it could reach the value of 2 (fluctuations are
two times the mean daily irradiance). Variable days have
NMHV> 0.4. Figure 1 shows the HV daily behavior for a vari-
able and a not variable day.

The NADV of the solar irradiation is also a new index defined
by the authors and is written as

NADV ¼ NDVj j ¼ ðH tð Þ � H t� 1ð ÞÞ
ðH tð Þ þ H t� 1ð ÞÞ=2

����
���� (3)

where

H tð Þ and H t� 1ð Þ ¼ irradiations at days : t and t� 1

It is used as an indicator of the weather persistence of 1 day
with respect to the other. NADV< 0.4 has been considered as
indicator of stable weather conditions with respect to the past day.
To characterize the day by day variability of the site, a 5 yr dataset
(2008–2012) coming from the weather and solar station of ESTER
facility was considered. Figure 2 shows the probability density
function (PDF) of NDV of the horizontal irradiation, measured at
the ESTER location during the considered years. It can be
observed that small variations of weather conditions between two
consecutive days (low NADV) are much more probable than fast
weather changing (high NADV). In general, the mean value and

Fig. 1 HV of irradiance for two different days. Variable day: January 1, 2009 and not variable
day: January 11, 2009.

Fig. 2 PDF of normalized daily variation
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the variance of PDF changes from year to year and from site to
site but the shape of the PDF remains the same. Thus the weather
tends to be persistent.

Also for this reason, to evaluate a forecast model performance, the
persistence model (PM) is commonly used. Moreover, fast weather
perturbations (high NADV) could be forecast only using NWP mod-
els since the correlations between the input parameters at lag0 (day t)
and the forecast irradiance at lag1 (day tþ 1) are very low. Neverthe-
less, the ST models could show good performance for the majority
of the days that have relatively persistent conditions (low NADV).

In order to strengthen the input variables choice, the correlation
between them at the same day (lag0) and the daily irradiation on
the plane of array (Hpoa) of the day ahead (lag1) was evaluated.
The Pearson correlation coefficients for the five variables are
listed in Table 1. High correlation coefficients can be observed for
all the variables proving that they all contribute as significant
inputs of the ST models. However, the two ST parameters show
lower correlation coefficients than the other physical variable indi-
cating a minor contribution to the solar irradiance forecast.
Another meteorological parameter that is usually measured by all
the PV plant monitoring systems is the ambient temperature (Ta).
Since it is strongly correlated to the daily irradiation (see Table 1),
it was used as input variable.

4 Forecast Models Description

In this section, the general features of all the used forecast mod-
els are discussed. In Table 2, all the technical specifications of
each model and technique are reported.

4.1 PM. Since the weather tends to be persistent, it is possible
to define a trivial model [19]

Gpoa1 tþ 1ð Þ;… Gpoa24 tþ 1ð Þ½ � ¼ Gpoa1 tð Þ;… Gpoa24 tð Þ½ �
(4)

Table 1 Pearson correlations of the input variables at lag0 and
Hpoa at lag1 in the year 2009

Hpoa
(lag0)

Ta
(lag0)

CR
(lag0)

NMHV
(lag0)

NADV
(lag0)

Hpoa(lag1) 49% 51% 40% 19% 30%

Fig. 3 Sketch of the MLPNN architecture. P1: input vector with
R rows. For i-layer, IWi: input weights, LWi: layer weights, bi:
bias vector, Si: number of neurons, ai: output vector, and fi:
transfer function.

Table 2 Technical specifications of the models

Type Name Description

Persistence PM [Gpoa1(tþ 1)… Gpoa24(tþ 1)]¼ [Gpoa1(t)… Gpoa24(t)]
ST models with feed forward
multi layer perceptron

1MLP [Gpoa1(tþ 1)… Gpoa24(tþ 1)]¼ f1(OD(t), Hpoa(t), Ta(t),CR(t))
JAVANNS: R¼ 6,S1¼ 30f 1 ¼ tansigmoid, S2¼ 24 f 2 ¼ purelinear, BBP

2MLP [Gpoa1(tþ 1)…Gpoa24(tþ 1)]¼ f2(OD(t),Hpoa(t),Ta(t),CR(t),
NMHV(t),NADV(t))
JAVANNS: R¼ 6,S1¼ 30f 1 ¼ tansigmoid, S2¼ 24 f 2 ¼ purelinear, BBP

3MLP Four seasonal NN in parallel:
[Gpoa1(tþ 1)…
Gpoa24(tþ 1)]¼ f3(OD(t),Hpoa(t),Ta(t),CR(t),NMHV(t),NADV(t))
JAVANNS: R¼ 6,S1¼ 30f 1 ¼ tansigmoid, S2¼ 24 f 2 ¼ purelinear, LMA

4MLP2Net: Two NN in series:
MLP4.1 [Hpoa(tþ 1)]¼ f4.1(OD(t� 1), Hpoa(t� 1), Ta(t� 1),CR(t� 1),OD(t), Hpoa(t),

Ta(t),CR(t))
MATLAB: R¼ 8,S1 ¼ 10f 1 ¼ tansigmoid, S2 ¼ 1 f 2 ¼ purelinear, LMA

MLP4.2 [Gpoa1(tþ 1)… Gpoa24(tþ 1)]¼ f4.2(OD(tþ 1), Hpoa(tþ 1),
Ta(t),CR(t),NHV(t),
NDV(t))MATLAB: R¼ 6,S1¼ 10f 1 ¼ tansigmoid, S2¼ 1 f 2 ¼ purelinear, LMA

MOS technique with NWP
and multi layer perceptron
feed forward

5NWPMLP [Gpoa1(tþ 1)… Gpoa24(tþ 1)]¼ f8(OD(t), Hpoa(t), Ta(t),CR(t), OD(tþ 1),
Hh_nwp(tþ 1))
MATLAB: R¼ 6,S1 ¼ 10f 1 ¼ tansigmoid, S2 ¼ 15 f 2 ¼ purelinear, LMA

6NWPMLP [Gpoa1(tþ 1)… Gpoa24(tþ 1)]¼ f9(OD(tþ 1), [Gh_nwp1(tþ 1)…
Gh_nwp24(tþ 1)])
MATLAB: R¼ 25,S1 ¼ 20f 1 ¼ tansigmoid, S2 ¼ 15 f 2 ¼ purelinear, LMA

7NWPMLP [Gpoa1(tþ 1)… Gpoa24(tþ 1)]¼ f10(OD(t), Hpoa(t), Ta(t),CR(t),OD(tþ 1),
[Gh_nwp1(tþ 1)… Gh_nwp24(tþ 1)])
MATLAB: R¼ 25,S1 ¼ 20f 1 ¼ tansigmoid, S2 ¼ 15 f 2 ¼ purelinear, LMA

8NWPMLP2Net: Two NN in series:
NWPMLP8.1 [Hpoa(tþ 1)]¼ f41(OD(t� 1), Hpoa(t� 1), Ta(t� 1),CR(t� 1),OD(t), Hpoa(t),

Ta(t),CR(t), OD(tþ 1), Hh_nwp(tþ 1))
MATLAB: R¼ 10,S1 ¼ 10f 1 ¼ tansigmoid, S2 ¼ 1 f 2 ¼ purelinear, LMA

MLP4.2 [Gpoa1(tþ 1)… Gpoa24(tþ 1)]¼ f42(OD(tþ 1), Hpoa(tþ 1))
MATLAB: R¼ 6,S1 ¼ 10f 1 ¼ tansigmoid, S2 ¼ 1 f 2 ¼ purelinear, LMA

Notes: LMA¼Levenberg–Marquardt algorithm; BBP¼ batch back propagation; OD¼ ordinal date (ISO 8601); H¼ daily irradiance (kWh/m2 day);
CR¼ cloud ratio; Ta¼mean daily temperature; NMHV¼ normalized maximum hour variation;, and NADV¼ normalized absolute day variation.
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A forecasting model should have better performance than the PM.
Moreover, the performance improvement of a model with respect to
the PM is a parameter almost yearly and site independent.

4.2 ANN Models. To develop the ST models and MOS tech-
nique, the ANN multilayer perceptron neural network (MLPNN)
algorithm was used.

The MLPNN architecture, reported in Fig. 3, uses meteorologi-
cal parameters to forecast the 1 day ahead hourly irradiance

Gpoa1 tþ 1ð Þ;… Gpoa24 tþ 1ð Þ½ � ¼ f ðmeteorological parametersÞ
(5)

The inputs meteorological parameters could come only from
past local measurements (in the case of ST models) or also from
NWP forecasting data (in the case of MOS).

In this work, the performance of eight different MLPNN used
to develop ST and MOS, are reported. These ANN were devel-
oped with two softwares: MATLAB and JAVA NNS to verify the reli-
ability of the models. Similar performance was found and the
results of most performing models were reported.

To define the best numbers of neurons and optimize the net-
work, the following procedure was used:

• 284 days selected from the November 1, 2009 to October 31,
2010 with the condition that three consecutive days data exist
were used for training and validation. The 80% of these data

were randomly sorted for training the MLP and the 20% for
validation.

• To select the best number of neurons of the hidden layer
(best S1) for each dimension S1¼ [1,5,10,15,20,25,30], the
NN was trained almost 20 times. Then the architecture that
exhibits the minimum mean square error (MSE) on the vali-
dation set was chosen.

• To optimize the model (best IW1 and LW), the selected NN
architecture was trained almost 50 times, then, the MLP that
presented the minimum MSE on the validation set was
selected.

• To test the best model, the data of 270 days selected from the
January 1, 2009 to December 31, 2009 were used with the
condition that three consecutive days data should exist.

For the NN developed with MATLAB tool, the training algorithm
is the Levenberg–Marquardt (LMA) [20], while for the one devel-
oped with JAVA NNS the training algorithm is the batch back propa-
gation (BBP). For each training operations, the convergence
process was stopped when the MSE on the validation set reached
its minimum.

5 Results and Discussion

5.1 ST Performance Indicators. The main ST performance
indicators used in the analysis are listed in Table 3. The
Kolmogorov–Smirnov index (KS) is the maximum difference

Table 3 Main performance parameters used in the analysis

Name Acronym and formulae

KS index KS ¼ supG CDFm Gð Þ � CDFf Gð Þ
�� ��

Pearson correlation coefficient
CORR ¼

Xn

i¼1

Gm
i � Gm

� �
Gf

i � Gf
� � !� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðGm
i � GmÞ2

Xn

j¼1

ðGf
j � GfÞ2

s

RMSE
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðGm
i � Gf

i Þ
2
.

n

s
ðW=m2Þ

MAE
MAE ¼

Xn

i¼1

Gm
i � Gf

i

�� �� !,
ntðW=m2Þ

MBE
MBE ¼

Xn

i¼1

Gm
i �Gf

i

�� �� !,
nðW=m2Þ

Daily CAE
CAE ¼

X24

i¼1

Gm
i � Gf

i

�� ��ðkWh=m2dayÞ

Improvement or skill score IRMSE ¼ 100 RMSE PMð Þ � RMSEðmodelÞð Þ= RMSE PMð Þð Þð Þ (%)

NMAE difference DNMAE ¼ NMAE PMð Þ � NMAEðmodelÞ (%)

Note: Gm
i ¼ measured hourly irradiance ðkW=m2Þ; Gf

i ¼ forecast hourly irradiance ðkW=m2Þ.

Table 4 Models performance main results, Gpoa is the global irradiance on the plane of the module. Boldface values are referred
to the best models results in terms of performance and reliability.

Forecast variable Name Test days KS CORR RMSE (W/m2) NRMSE (%) IRMSE (%) NMAE (%) DNMAE (%)

Gpoa PM 270 0 0.72 236 50.6 1 29.6 1

ST models with local data
1MLP 270 0.13 0.81 188 40.2 20.6 29.1 0.5

2MLP 270 0.09 0.79 197 42.3 17.1 28.4 1.2
3MLP 270 0.05 0.72 231 49.6 2.4 32.9 �3.3

4MLP2Net 270 0.09 0.81 187 40.1 21.3 27.4 2.2

MOS models with local and NWP data
5NWPMLP 270 0.06 0.89 145 31 38.7 20.2 9.4

6NWPMLP 270 0.06 0.89 145 31.2 38.4 20.9 8.7
7NWPMLP 270 0.05 0.89 147 31.5 37.9 20.7 8.9

8NWPMLP2Net 270 0.07 0.884 149 31.9 37.2 20.8 8.8
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between the cumulative density function (CDF) of the measured
and forecast irradiance. It evaluates the similarity between the two
irradiance distribution functions (measured and forecast). The nor-
malized values of RMSE and MAE are evaluated dividing the
parameters by the yearly average irradiance.

All the ST indexes are calculated considering only the day time
hourly irradiance (G> 20 W/m2), indeed including the nighttime
values all the average calculations would be underestimated.

It should also be pointed out that the NMAE is exactly the mea-
sure of the unbalanced energy with respect to the total PV electricity
delivered to the grid. Even if, in the literature, the most used indicator
is the RMSE, also the NMAE evaluation is very important.

5.2 Models Performance Analysis. The main results of all
the forecast models are summarized in Table 4.

The performance of four ST models developed with MLPNN
architecture was analyzed. The model 2MLP uses as input, all the
daily variables described in Sec. 3, while the model 1MLP uses
only the parameters OD, Hh, CR, and Ta that have the maximum
correlation with daily irradiance at day tþ 1 (lag1) (Table 1). The
model 1MLP shows the best performance proving the right mini-
mum choice of the input variables and confirming the result
obtained in Ref. [5]. Figure 4 shows the scatter plot of this model.
The model 3MLP explores a seasonal approach, thus for each
season an MLPNN was developed and used in parallel. Even if
this approach could potentially bring to good results, one season
is insufficient to train and validate each ANN. Thus, in this case,
the 3MLP model shows worst performance with respect to the
others.

Noting that the correlation between the measured daily irradia-
tion (Hpoa) at lag0 and lag1 is greater than the one between
hourly irradiance (Gpoa) at lag0 and lag1, the forecast problem
was split in two steps, using two NN in series: one (MLP4.1) to
forecast the Hpoa(tþ 1) and other (MLP4.2) to reconstruct the
Gpoa from the forecast daily irradiation (Hpoa(tþ 1)). The model
4MLP2Net summarizes the results of this two steps approach.

The MLP4.2 that predicts the hourly irradiance from the same
day irradiation (shape irradiance forecast model) shows very good
performance (Corr¼ 0.95, NRMSE¼ 20%, and NMAE¼ 13%,
see Fig. 4).

Nevertheless, the first step MLP4.1 is not a well enough per-
forming model (Corr¼ 0.69, NRMSE¼ 29%, and NMAE¼ 23%,
see Fig. 4). Besides, for the MLP4.1 model, an over fitting trend
in the training phase was observed, thus even if the 4MLP model
shows the best performance, this model was considered less reli-
able than the others. Probably, this ANN model could be
improved using more than 1 yr data for training and validation.

Almost all ST models realize an improvement of around 20%
in terms of RMSE but they do not achieve any gain in terms of
MAE (imbalanced energy measure).

Finally, it should be remarked that there is not a general stand-
ard for ST NN model performance evaluation in the literature: dif-
ferent ST indicators and test time intervals are used or different
variables are forecast (horizontal, POA irradiance, and PV power).
Thus, as already pointed out, the 1 yr results (270 days spread
over 1 yr) presented in this article are not easily comparable with
the ones reported in the literature [6–8, 10, 13]. Moreover, a sys-
tematic study on the performance improvement dependence on

Fig. 4 (a) correlations between measured data and MPL4.1
and MPL4.2 model forecast data (hourly shape forecasting), (b)
correlations between measured data and 1MLP and 5NWPMLP

Fig. 5 Improvement 1MLP model (a) and 5NWPMLP model (b) with respect to the PM
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the year and site should be done; thus, the results presented could
not be generalized.

Four MOS approaches based on MLPNN architecture were
developed and studied. All of them use NWP and local data as
input and were trained with the site measured hourly POA irradi-
ance. The 5NWPMLP model used as inputs both the local meas-
ured meteorological parameters: OD, Hpoa, Ta, CR at lag0 and
OD, and the NWP forecast daily irradiation: Hh_nwp at lag1. The
6NWPMLP model used directly the NWP predicted hourly hori-
zontal irradiance: Gh_nwph(tþ 1) (with h¼ 1,24), while
7NWPMLP used both the meteorological parameters and the fore-
cast NWP irradiance. Finally, the model 8NWPMLP used the two
step approach: NWPMLP8.1 predicts the daily POA irradiation
Hpoa(tþ 1) from the meteo parameters measured at day t and
t� 1 and Hh_nwp at tþ 1 while the described MLP4.2 shape fore-
cast model reconstructs the Gpoa(tþ 1) from the forecast daily
irradiation. All the approaches present an improvement up to
37%. Since the obtained results are all very similar, the increasing
performance of the MOS techniques does not depend neither to
local meteo parameters (input of 5NWPMLP) nor to NWP pre-
dicted hourly irradiance (input of 6NWPMLP). In any case, the
best performance is obtained by 5NWPMLP. Figure 4 reports the
scatter plot for this model.

Figure 5 reports the improvement in terms of daily cumulative
absolute error (CAE) of the best ST and MOS models with respect
to the PM: when the improvement is positive, the models produce
smaller errors than the PM model while, when it is negative, the
PM model provides a better forecast.

From Fig. 5(b), it appears that the MOS 5NWPMLP realizes,
for the majority of the days, a great forecast improvement while
only for few persistent days it provides a very small increase of
the PM errors. Figure 6 compares the measured and forecast
hourly trend for a sample of days for 1MLP and 5NWPMLP. The
fast reaction of the MOS approach to the weather changing condi-
tions due to the NWP irradiation forecast can be noted. On the
whole, these MOS bring to high improvements: IRMSE up to 37%
and DNMAE around 9% (see Table 4). From the reporting site an
NMAE of 20.2% has been realized.

The high improvement of the MOS can be explained consider-
ing two different contributions coming from the NWP data and
the ST correction. The main contribution of the NWP data is
related to the good prediction of the daily horizontal irradiation
while the contribution of the ST models using MLP is related to a
best hourly prediction and to the irradiance transposition. Thus,
the MOS improves the NWP hourly forecast and transposes the
predicted horizontal irradiance on the POA.

Fig. 6 Example of sequence of measured and forecast data for the 1MLP and the 5NWPMLP models

Fig. 7 On the left: MBE values versus forecast Kcs for the ECMWF; on the right: the same for
the 5NWPMLP
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To evidence the benefit of the NWP and ST models combina-
tion (MOS approach) the mean bias error (MBE) trend with
respect to the forecast clear sky index, Kcs is shown in Fig. 7 for
the ECMWF prediction and the 5NWPMLP model, respectively.
A consistent underestimation of solar irradiance is observed for
the ECMWF prediction for all the forecast Kcs. This underestima-
tion is smaller for forecast Kcs in the range of 0.4–0.6. 5NWPMLP
reduces the negative ECMWF bias of almost 40 W/m2 for forecast
Kcs lower than 0.6 (cloudy and partially cloudy instants) and it
almost eliminates the bias for forecast Kcs higher than 0.6 (partially
cloudy to clear sky instants). The bias compensation for intermediate
Kcs values results in an overestimation for 5NWPMLP. So the MOS
main advantage consists in the bias reduction.

All the reported approaches exhibit an underestimation of the
forecast value at high irradiance level and an overestimation at
low irradiance level. This could be seen also from the measured
and forecast CDF curves as reported in Fig. 8 for 5NWPMLP.

Figure 9 reports the monthly NMAE of the PM, 1MLP, and
5NWPMLP. All the models exhibit a lower performance with
respect to the PM in the month of July and August; while 1MLP

model also in February and May. Besides, from this figure, the
small improvement of the ST model can be observed. From the
seasonal point of view, the ST model fails in Summer and Spring
time as evidenced in Table 5.

Finally, from Table 6, the difference between the performance
of sunny and cloudy days can be observed. It should be noted that
the NRMSE and CORR between sunny and cloudy days is greater
than four points. Tables 7 and 8 report the comparison of the
1MLP and 5NWPMLP performance between variable and not
variable days and between stable and unstable days. It appears
that the performance difference between variable and not variable
days is very similar: around 40% in NRMSE and ten points of cor-
relation. On the contrary, the performance difference between

Fig. 8 5NWPMLP model KS test

Fig. 9 Monthly performance of different forecast models

Table 5 Seasonal performance of the selected models. Bold-
face values evidence the failure of ST model with respect to PM
in spring and summer.

NMAE Hpoa (%)

Season 1MLP 5NWPMLP PM

Winter 50.6 30.6 50.2
Spring 28.5 19.3 25.5
Summer 15.1 12.8 14.0
Autumn 38.5 26.2 45.5

Table 6 Sunny (CR <5 0.4) and cloudy (CR > 0.4) days perform-
ance of the selected models

NRMSE (%) CORR

Model Sunny Cloudy Sunny Cloudy

1MLP 37.1 44.5 0.83 0.78
5NWPMLP 28 34.9 0.91 0.87

Table 7 Not variable (NMHV <5 0.4) and variable (NMHV > 0.4)
days performance

NRMSE (%) CORR

Model Not variable Variable Not variable Variable

1MLP 41.3 78.6 0.96 0.86
5NWPMLP 26 65.7 0.98 0.90
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stable and unstable days for the model 1MLP (ST) is almost 80%
in NRMSE and 20 points in correlation (CORR in the table),
while for the model 5NWPMLP (MOS) is almost 55% in NRMSE
and ten points in correlation. Indeed, the MOS provides a much
better irradiance forecast for unstable weather conditions, since
the NWP data used for the model provide a good forecast of the
daily irradiance. This could be observed also comparing the per-
formance of the two 1MLP and 5NWPMLP; the NMRSE and
CORR improvement is much smaller for stable days than for
unstable days. Finally, it has to be pointed out that the NWP data
used in the MOS are not operational forecast but a reanalysis.
This fact could have improved the obtained results; however, it
should not threaten the validity of the conclusions achieved due to
the ability of ANN to use ground measurements to refine the fore-
cast. Indeed, the improvement of the MOS could be more impor-
tant using the operational NWP data than using the reanalysis.
Further investigations will be done on this feature.

6 Conclusions

Several different POA irradiance forecast models on the 24 hr
horizon have been developed using ANN algorithms. The per-
formance of four ST models and four MOS approaches have been
evaluated and discussed. The ST models use only site measured
meteorological parameters as inputs, while the MOS is used to
refine the input NWP data. The reference site is the University of
Rome “Tor Vergata” and the reference year for the models test is
2009.

The used ST models show a performance in terms of RMSE
improvement of around 20%. PM and ST models show the same
results in terms of NMAE.

The MOS techniques correct NWP hourly forecast taking into
account the site effects and transposing the predicted horizontal
irradiance on the POA. Thus, they show the best performance
increasing the improvement up to 37% in terms of RMSE and 9%
in terms of NMAE. The annual imbalanced energy measure
(NMAE) of these models is around 20%, very near to the Italian
threshold of 15%.

In particular, the outperforming MOS solution is the
5NWPMLP, which is also the simplest approach.

For what concerns the amount of data used for this analysis, it
has to be said that for MLP techniques 1 yr of training data are
enough to provide an adequate accuracy of the forecast for the
considered site. In any case, it should be remarked that the per-
formance is strictly dependent on the persistence of the year used
for testing.
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